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ABSTRACT

This paper introduced type-2 fuzzy non-uniform rational B-spline curve
(F2NURBS) interpolation model for type-2 fuzzy data points. The curve
model is defined using type-2 fuzzy control points, crisp knot and weight.
Later, the data points of type-2 fuzzy NURBS curve after type-reduction
and defuzzification is discussed. Finally, a numerical example and an
algorithm to generate the model are shown at the end of this paper.
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1. Introduction

Real-life situation is full of vagueness and uncertainties. Neglecting those
uncertainties would mean fail to describe the true situation of data points.
With the method of fuzzy set theory, uncertainties can be transformed into a
form of set, which is described by some value of truth. The elements in the
domain of uncertainty will match with the value of membership in the close
interval 0 and 1. By using this approach, the data will be in fuzzy data form.
If uncertainty in uncertainty is considered, then the data will be in the form
of type-2 fuzzy data set. For interpolation model, the data points are acquired
from the object, and the NURBS interpolation could be used to reproduce the
shape of the object such as curve or surface. In this paper, type-2 fuzzy set
theory and geometric modeling with uncertainties characteristic is investigated
and visualized.

Zadeh (1965) introduced fuzzy set theory to describe uncertainties by using
mathematical representation. Later, the concept of linguistic variable is intro-
duced in Zadeh (1975) where linguistic variable can be used to measure words
or sentences in language within values 0 and 1. Then Dubois et al. (2000)
properly defined the word fuzzy. They also provided a systematic framework
to handle uncertainties that occur in human thought. Moreover, the concept
of fuzzy numbers was introduced by Dubois and Prade (1980). The operation
on sets and fuzzy numbers such as addition, multiplication, intersection and
union is referred to Klir and Yuan (1995). Finally, type-2 fuzzy set theory is
defined in details by Mendel (2001) where the uncertainty in its membership
function is defined as secondary membership grade.

There are some past research that combines fuzzy set theory and geometric
modeling such as Jacas et al. (1997) that used fuzzy logic in CAGD for curve
and surface design and Anile et al. (2000) discussed about fuzzy B-splines. In
addition, researches on fuzzy Bézier curve have been done by Wahab et al. and
Zakaria et al. (2001) and have been applied on off-line handwritten signature
verification and fuzzy grid data. Fuzzy interpolation of rational cubic Bézier
are proposed with different degree of signature blurring in Zakaria and Wahab
(2012). Fuzzy interpolation of B-splines curve is then introduced in Karim
et al. (2013) and Wahab and Zakaria (2012). Particularly on NURBS, Wahab
and Husain (2011a) and Wahab and Husain (2011b) shown fuzzy NURBS curve
and surface with fuzzy control points, fuzzy knot and fuzzy weight.

Data points, knots and weights are three important elements to generate
NURBS curve or surface. However, when uncertainties occur in either data
points, knots or weights, crisp NURBS model fails to express the problem.
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Recently, research has been done on type-1 fuzzy Bézier, type-1 fuzzy B-spline,
type-1 fuzzy NURBS model as in Anile et al. (2000), Wahab et al., Karim
et al. (2013) and Zakaria and Wahab (2013). Nevertheless, investigation on
one of the common interpolation method, NURBS curve interpolation that can
handle uncertainties in either data points, knots or weights have not been done
yet. As a matter of fact, when researchers are dealing with type-2 uncertainty
data problem, the existing type-1 fuzzy model is unable to define the type-2
uncertainty (Zakaria et al. (2013a)). Thus, research on type-2 fuzzy NURBS
curve interpolation is necessary to be investigated.

2. Type-2 Fuzzy NURBS Curve Modeling

The proposed type-2 fuzzy NURBS curve model provides better curve in-
terpolation that can handle complex uncertainties and enables it to reproduce
a more desired and smoother curve. Particularly, in curve interpolation, the de-
veloped model can handle type-2 uncertainty data through type-2 fuzzy data
points in curve interpolation. The propose model allows the users to tuned
the interpolation curve by adjusting knot and weight to obtain a perfect de-
sired curve. As a result, the proposed method is an important contribution
to CAGD especially in reverse engineering. The development of type-2 fuzzy
NURBS based on type-2 fuzzy control points was discussed in Zakaria et al.
(2013a) and Zakaria et al. (2013b). Undoubtedly, the advantage of type-2 fuzzy
in geometric modeling is it could define uncertainties in uncertainties. Thus,
type-2 fuzzy set is an appropriate method to describe uncertainties in data
points.

3. Type-2 Fuzzy Points

Definition 3.1. Let P = {x|x type-2 fuzzy point} and T2
↔
P = {Pi|Pi point}

is a set of type-2 fuzzy point with Pi ∈ P ⊂ X, where X is universal set.
The membership function µP (Pi) : P → [0, 1] is defined as µP (Pi) = 1 and

formulated by T2
↔
P = {(Pi, µP (Pi)|Pi ∈ R}. Thus,

µP (Pi) =


0 if Pi /∈ X,

c ∈ (0, 1) if Pi
↔
∈ X,

1 if Pi ∈ X.
(1)

where µP (Pi) = 〈µP (T2L
↔
Pi), µP (Pi), µP (T2R

↔
Pi)〉 with µP (T2L

↔
Pi) are left; µP (T2R

↔
Pi)
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are right footprint of membership values with µP (T2L
↔
Pi) = 〈µP (L

↔
P←i ), µP (L

↔
P→i )〉

and µP (L
↔
P←i ) are lower bound of the left footprint; µP (L

↔
P→i ) is the upper bound

of left footprint. µP (R
↔
P←i ) are membership grade of lower bound of right foot-

print; µP (R
↔
P→i ) is the membership grade of upper bound of right footprint.

Type-2 fuzzy point can also be written as T2
↔
P = {T2

↔
Pi : i = 0, 1, 2, . . . , n}.

For all i, T2
↔
Pi = 〈T2L

↔
Pi, Pi,

T2R
↔
Pi〉 with T2L

↔
Pi = 〈L

↔
P←i ,L

↔
P→i 〉 where L

↔
P←i are

lower bound of left footprint; L
↔
P→i are upper bound of left footprint of type-2

fuzzy point and T2R
↔
Pi = 〈R

↔
P←i ,R

↔
P→i 〉 where R

↔
P←i , and R

↔
P→i are lower and

upper bound of type-2 fuzzy point respectively. Figure 1 shows a process of
obtaining type-2 fuzzy points/knot/weights.

Figure 1: Process of obtaining type-2 fuzzy points/knots/weights

Definition 3.2. Let T2
↔
P be the set of type-2 fuzzy points and T2

↔
Pi ∈T2

↔
P

where i = 0, 1, . . . , n and n + 1 is the number of point. α-cut operation on
type-2 fuzzy points T2

↔
Pαi is defined as,

T2
↔
Pαi =

〈
〈L

↔
Pα←i ;L

↔
Pα→i 〉, Pi, 〈R

↔
Pα←i ;R

↔
Pα→i 〉

〉
=
〈[

(Pi − 〈L
↔

Pα←i ;L
↔

Pα→i 〉)α+ 〈L
↔

Pα←i ;L
↔
Pα

→

i 〉
]
, Pi,[

− (〈R
↔

Pα←i ;R
↔

Pα→i 〉 − Pi)α+ 〈R
↔

Pα←i ;R
↔

Pα→i 〉
]〉 (2)

with specific α value chosen, where α ∈ (0, 1]. Type-2 fuzzy points after α−cut
can be calculated by using Equation (2). Moreover, Equation (2) can also be

applied when the points are type-1 fuzzy points, where L
↔

Pα←i =L
↔

Pα→i and
R
↔

Pα←i =R
↔

Pα→i .
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Definition 3.3. Let T2
↔
Pi be a set of (n+1) type-2 fuzzy points, type-reduction

method of T2
↔
Pi after α−cut of T2

↔
Pαi , is defined as,

↔̄
Pα = {

↔̄
Pαi = 〈L

↔̄
Pαi , Pi,

R
↔̄
Pαi 〉; i = 0, 1, . . . , n} (3)

where L
↔̄
Pαi is left type-reduction of α−cut type-2 fuzzy points, L

↔̄
Pαi = 1

2

∑n
i=0

〈L
↔

Pα←i +L
↔

Pα→i 〉, Pi is the crisp point and R
↔̄
Pαi is right type-reduction of α−cut

of type-2 fuzzy points, R
↔̄
Pαi = 1

2

∑n
i=0 〈R

↔
Pα←i +R

↔
Pα→i 〉.

Definition 3.4.
↔̄
Pαi is the type-reduction method after -cut process is applied

for every type-2 fuzzy points, then defuzzification process for
↔̄
Pαi is denoted by

¯̄Pαi . If every
↔̄
Pαi ∈

↔̄
Pα, ¯̄Pαi = { ¯̄Pαi } for i = 0, 1, . . . , n. So, the defuzzification

process can be formulated as,

¯̄Pαi =
1

3

n∑
i=0

〈L
↔̄
Pαi , Pi,

R
↔̄
Pαi 〉 (4)

4. Type-2 Fuzzy NURBS Curve Interpolation

Similar to type-2 fuzzy NURBS curve model, the contradiction of the crisp
boundary in type-1 fuzzy model is insufficient to describe fuzziness that occur
in the membership grade. When researchers are uncertain of the membership
grade of type-1 fuzzy sets, in this case, type-1 fuzzy NURBS curve interpolation,
a type-2 fuzzy NURBS curve interpolation with type-2 fuzzy data points is
constructed instead of type-1 fuzzy set to encounter type-2 fuzzy problem. The
type-2 fuzzy data points are defined by type-2 fuzzy number and type-2 fuzzy
relation. Type-2 fuzzy data point is suitable to handle complex uncertainty
data as in Zakaria et al. (2013a) and Zakaria et al. (2013b).

Definition 4.1. Interpolation of NURBS curve with type-2 fuzzy data points
are defined as,

T2FNrbI = {T2
↔
Nrbα|T2

↔
Nrbα, α ∈ (0, 1]} (5)

where T2
↔
Nrbα =

〈
(L
↔
Nrb←α ,

L
↔
Nrb→α ), Nrbα, (

R
↔
Nrb←α ,

R
↔
Nrb→α )

〉
, (L

↔
Nrb←α , L

↔
Nrb→α )

and (R
↔
Nrb←α ,

R
↔
Nrb→α ) represent left and right footprint of type-2 fuzzy NURBS
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interpolation curve after α−cut. Nrbα represents crisp NURBS interpolation
curve. α−cut level is defined by user and it is within the half open interval
(0, 1]. By assuming that only one α−cut is applied, five NURBS curve could be
generated. Finally, by rewriting the symbol in Equation (5) will yield

L
↔
NrbI←α (u) =

n∑
i=0

Ri,p(ūk)L
↔
P←i , (6)

L
↔
NrbI→α (u) =

n∑
i=0

Ri,p(ūk)L
↔
P→i , (7)

NrbIα(u) =

n∑
i=0

Ri,p(ūk)Pi, (8)

R
↔
NrbI←α (u) =

n∑
i=0

Ri,p(ūk)R
↔
P←i , (9)

R
↔
NrbI→α (u) =

n∑
i=0

Ri,p(ūk)R
↔
P→i , (10)

Each set of data points, Q is the input and P is the output. L
↔
P←i represents

the lower bound of left footprint and L
↔
P→i is the upper bound of left footprint

of control points while R
↔
P←i is lower bound of right footprint and R

↔
P→i is the

upper bound of right footprint. Pi is the control points generate by crisp data
points and T2

↔
Qi, T2

↔
Qi = {〈L

↔
Q←i ,

L
↔
Q→i 〉, Qi, 〈R

↔
Q←i ,

R
↔
Q→i 〉} generated by type-

2 fuzzy data points. T2
↔
Qi preserve the same properties as T2

↔
Pi and defined

in Definition 3.4. Ri,p(ūk) is a rational B-spline basis function and each of
the NURBS curve is generated by using Algorithm 1. For instance, consider a
set of fuzzified type-2 fuzzy data points as shown in Table 1, with crisp knot
u = {0, 0, 0, 0, 0.35, 0.7, 1, 1, 1, 1} and crisp weight wi = {1, 1, 1, 1, 1.5, 1}. This
problem is visualized in Figure 2.
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Table 1: Data points of type-2 fuzzy NURBS curve.

L
↔
Q←i

L
↔
Q→i Qi

R
↔
Q←i

R
↔
Q→i

q0 (2.2,0) (2.5,0) (3,0) (3.5,0) (3.8,0)
q1 (0,5) (0,4.5) (0,4) (0,3.6) (0,3.2)
q2 (3,5.5) (3.5,5.7) (4,6) (4.2,6.2) (5,6.5)
q3 (6.9,4) (7.3,4) (8,4) (8.3,4) (8.6,4)
q4 (9.3,6) (9.5,6) (10,6) (10.2,6) (10.5,6)
q5 (7,9.1) (7,9.3) (7,10) (7,10.5) (7,10.9)

Figure 2: Type-2 fuzzy NURBS interpolation with type-2 fuzzy data points.

Table 2: Data points of type-2 fuzzy NURBS curve after α−cut at 0.5.

L
↔

Q0.5← L
↔

Q0.5→ Qi
R
↔

Q0.5← R
↔

Q0.5→

q0 (2.6,0) (2.75,0) (3,0) (3.25,0) (3.4,0)
q1 (0,4.5) (0,4.25) (0,4) (0,3.8) (0,3.6)
q2 (3.5,5.75) (3.75,5.85) (4,6) (4.1,6.1) (4.5,6.25)
q3 (7.45,4) (7.65,4) (8,4) (8.15,4) (8.3,4)
q4 (9.65,6) (9.75,6) (10,6) (10.1,6) (10.25,6)
q5 (7,9.55) (7,9.65) (7,10) (7,10.25) (7,10.45)

By applying α−cut at 0.5, type-2 fuzzy data points is obtain as in Table 2
and the NURBS curve can be visualized as in Fig. 3.
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Figure 3: Type-2 fuzzy NURBS interpolation after α−cut at 0.5.

After applying centroid type-reduction, type-1 fuzzy NURBS curve data
points is obtained as in Table 3 and the curve is visualized in Fig. 4.

Table 3: Data points of type-2 fuzzy NURBS curve after type-reduction.

L
↔̄
Q0.5 Q R

↔̄
Q0.5

q0 (2.675,0) (3,0) (3.325,0)
q1 (0,4.375) (0,4) (0,3.7)
q2 (3.625,5.8) (4,6) (4.3,6.175)
q3 (7.55,4) (8,4) (8.225,4)
q4 (9.7,6) (10,6) (10.175,6)
q5 (7,9.6) (7,10) (7,10.4)

Figure 4: Type-1 fuzzy NURBS curve interpolation after type-reduction.
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By applying centroid defuzzification, the crisp data points can be referred
in Table 4. The NURBS curve interpolation is visualized in Figure 5.

Table 4: Data points of type-2 fuzzy NURBS curve after defuzzification.

Q
¯̄

Q0.5

q0 (3,0) (3,0)
q1 (0,3.817) (0,4)
q2 (3.975,5.992) (4,6)
q3 (7.925,4) (8,4)
q4 (9.958,6) (10,6)
q5 (7,10) (7,10)

Figure 5: Crisp of type-2 fuzzy NURBS curve interpolation after defuzzification.

Below is the algorithm in order to generate the type-2 fuzzy non-uniform
rational B-spline (F2NURBS) curve interpolation model for type-2 fuzzy data
points.

Algorithm 1:

1. Step 1. Each upper and lower bound of the left and right
footprint of type-2 fuzzy data points, L

↔
Q←, L

↔
Q→, Q, R

↔
Q←, R

↔
Q→ of

NURBS curve is interpolated by using Equation (5).

2. Step 2. α−cut is applied on type-2 fuzzy data points and
calculated by using Equation (2). Each of the type-2 fuzzy

control points of NURBS curve, L
↔

Qα←, L
↔

Qα→, Q, R
↔

Qα←, R
↔

Qα→ is plot-
ted by using Equation (2).
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3. Step 3. Type-reduction is applied and calculated by using

Equation (2). Each of the type-1 fuzzy data points, L
↔̄
Qα, Q, R

↔̄
Qα is

plotted using Equation (5).

4. Step 4. Defuzzification is applied and calculated by using
Equation (4). Crisp of type-2 fuzzy NURBS curve, ¯̄Qα is then obtained
and plotted by using Equation (5).

5. Conclusion

Type-2 fuzzy NURBS model that was discussed in this paper is focused
on two dimension curve only. Type-2 fuzzy NURBS curve preserve the same
properties as crisp NURBS curve since both left and right footprint of the curve
built upon crisp NURBS curve. The type-2 fuzzy NURBS curve control points
model is suitable for approximate a curve model. This model could handle type-
2 uncertainties or complex uncertainties in control points, knots and weight
to obtain desired curve model. In order to solve type-2 uncertainties of data
points in NURBS curve interpolation, type-2 fuzzy NURBS curve interpolation
method with type-2 fuzzy data points method is used. After α−cut and type
reduction, type-1 fuzzy data points is obtained and through defuzzification, the
result is crisp of type-2 fuzzy data points.
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